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Abstract

This paper reports a new, efficient physical
HEMT model capable of accurately predicting
DC, small- and large-signal performance. It has
been interfaced to an industry standard simulator
which allows for accurate, large-signal simu-
lation to be integrated into the design process.
Large-signal results demonstrate the model’s
suitability for MMIC CAD.

I Introduction

Physical models have advantages over circuit
models due to their predictive nature and abil-
ity to relate manufacturing process variations to
the electrical performance of devices. The imple-
mentation of a physical model for a HEMT, how-
ever, presents quite a challenge due to the com-
plexity of the active layers and the small geometry
of the device. Nevertheless, the use of HEMTS in
MMIC:s is now widespread, providing significant
motivation for the realisation of such an approach
to aid in the design of microwave devices and cir-
cuits.

IT Model Description

The quasi-two-dimensional (Q2D) model used
here is based on the work of Snowden and Pan-
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toja [1] but incorporates several new and impor-
tant features which are essential for the simula-
tion of HEMTs [2]. The Q2D approach is based
on the assumption that the fundamental driving
force for electron transport is the z-directed elec-
tric field. The potential drop from the source to
drain can then be described in terms of the propa-
gation of a Gaussian box as depicted in Figure 1.
The charge within the Gaussian box is obtained
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Figure 1: Schematic of Q2D approach

from a ‘look-up table’ which is generated using
an accurate and efficient charge-control model
[3]. Some of the Q2D model’s important fea-
tures have been reported previously [2] which en-
able the accurate prediction of pinch-off, break-
down and transconductance compression. The
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Q2D model preserves the conditions of conser-
vation of momentum and charge which are both
essential for accurate simulation of S-parameters.
The efficiency of this new HEMT model is much
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Figure 2: Example solution from quasi-two-
dimensional model showing potential, elec-
tric field, carrier density and velocity profiles

improved over previous work and is such that
DC I-V characteristics or S-parameters at one fre-
quency and bias point are simulated in less than
12 seconds on a HP 735 workstation.

Figure 2 shows an example of a solution from
the Q2D model, illustrating the sheet carrier den-
sity in the channel and the buffer, n., and ny,y,
the z-directed electric field and carrier velocity,
E, and v,, and the channel potential, V. The
solution has been taken at a bias point close to
device pinch-off to illustrate the case when the
majority of carriers flow through the buffer and
not through the device channel layer. The ex-
istence of buffer injection in the model arises
from the negative polarity of dE, /dz which is in-
cluded self-consistently in the charge-control and
transport simulations (y- and z- directions respec-
tively) [2]. The Q2D model must be capable of
modelling carrier injection into the buffer in or-
der to accurately describe the time-variation of
charge in the device channel during the rf simu-
lation. The influence of the double recess is also
shown in Figure 2 through the spreading of the
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electric field distribution on the drain side of the
device. This type of information indicates the
power of this Q2D model which provides signif-
icant insight into device operation and facilitates
the optimization of transistor design.

The HP-EEsof Root Model [4] is a measure-
ment based, technology and process independent
FET model. It has shown excellent agreement be-
tween predicted and measured large-signal char-
acteristics for a number of devices and condi-
tions, based upon measured bias dependent S-
parameters. Alternatively, the model can be gen-
erated using simulated S-parameters from a phys-
ical model [S]. This approach for large-signal
modelling using a physical model has a number of
advantages: (i) it is efficient compared to the con-
ventional type of large-signal time-domain simu-
lation; (ii) multiple large-signal simulations can
be carried out for a particular device structure
from the simulation of a single Root Model; (iii)
the physical model can be linked to commercial
simulators for small-, large-signal and statistical
simulation.
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Figure 3: Simulation plane for HP pseudom-
porphic HEMT

S-parameters are generated over the simulation
plane (Vp —V;) with the bias points chosen so that
more points are calculated in regions of high non-
linearity. The algorithm used is similar to that
used for the measurement of S-parameters [4].



This reduces the simulation time and storage re-
quirements and ensures accurate interpolation of
the model parameters - this mimics the measure-
ment plane used for the measurement-based Root
Model. Figure 3 shows the bias points used for
the S-parameter simulation. The device is simu-
lated well into pinch-off, breakdown and forward
bias regions. The contour integration routines [4]
produce a ‘look-up table’ compatible with com-
mercial simulators in which non-linear simula-
tion can be performed - HP EEsof’s Microwave
Design System (MDS). Generation of a complete
simulated Root Model data file for a single de-
vice over the full range of operation takes approx-
imately 15 minutes on a HP 735 workstation.

III Analysis

The device used in this study is a 0.25x240 pm
gate InGaAs channel pseudomporphic HEMT
with doping above and below the channel [6], fab-
ricated by Hewlett-Packard Microwave Technol-
ogy Division. Figure 4 shows a comparison with
the measured and simulated DC I-V character-
istics. The measured characteristics correspond
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Figure 4. Comparison of simulated and mea-
sured DC |-V characteristics

to the Root Model S-parameter bias points and
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their range is limited by the onset of device break-
down and the maximum power dissipation locus.
It should be noted that the measured and simu-
lated I, pinch-off and breakdown voltage agree
very well. At higher values of gate voltage there
is significant self-heating which reduces the mea-
sured output conductance.
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Figure 5: Fundamental, first and second har-
monics into 10012 in class A operation
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Figure 6: Fundamental, first and second har-
monics into 10092 in class AB operation

Comparing the large-signal performance of the
measured and simulated Root Models provides
quantitative validation of the physical model.
The agreement achieved when comparing a Root
Model (based on measurements) and actual large-
signal measurements is excellent [4]. Figures 5, 6
and 7 show comparisons between power transfer
characteristics produced using measured (+) and
simulated (x) Root Models within HP-EEsof’s
MDS. All simulations were performed at SGHz.



Two different bias points and loads were used for
the comparisons. In Figure 5 the bias is Vpg =
4.5V, Ips = 85mA (a typical Class A amplifier
bias point) with a load of 100 Ohms. Figures 6
and 7 show power transfer characteristics at a bias
of Vps = 4.5V and Ipg = 10mA (a typical Class
AB amplifier bias point) using loads of 100f2 and
5002 respectively. In all three figures, the agree-
ment between the ‘measured’ and simulated per-
formance is excellent. Typically, the fundamen-
tals agree to within 1dB well into compression.
The agreement between the measured and simu-
lated harmonics is also very good, demonstrating
the success of the approach taken.
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Figure 7: Fundamental, first and second har-
monics into 50¢2 in class AB operation

IV Conclusion

The use of a physical model for large-signal
HEMT performance prediction has been de-
scribed for the first time to the authors’ knowl-
edge. The interfacing of an efficient physical
simulator to a ‘table-based model’ has allowed
the simulation to be performed within industry-
standard non-linear CAD tools. The efficiency
of the model and the quality of the agreement be-
tween measured and simulated results illustrates
the power of this approach and demonstrates
its suitability as an integral part of the design
process for MMICs.
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